Mycokey

Integrated and innovative key actions for mycotoxin management in the food and feed chain

Lay summaries

Knowledge transfer to stakeholders

Aspergillus flavus and Fusarium verticillioides interaction: modeling the impact on mycotoxin production

European Commission

MODELING

A. flavus and F. verticillioides

APPROACH

Experimental trials were organized with A. flavus and F. verticillioides grown alone or together.

They were incubated at different temperature regimes (10-40°C, step 5°C) for 21 days.

Fungal growth was measured weekly, while AFs and FBs were quantified at the end of the incubation period.

collected Quantitative data were modelled using non-liner regression

Colonies of *A. flavus* and *F. verticillioides* grown alone colonies and together on corn meal medium incubated at 15°C for 7, 14, and 21 days.

A. flavus and F. verticillioides

Each fungus was affected by the presence of the other fungus; *A. flavus* and *F. verticillioides* showed a decrease in colony diameter of 10% and 44%, respectively, when they were grown together, compared to alone .

OUTCOMES

Fungal growth and toxin production in different temperature regimes were well described, both for *A. flavus* and *F. verticilliodes,* by a Bete function.

The developed functions will be used to improve predictive models performances.

Camardo Leggieri M, Giorni P, Pietri A and Battilani P 2019 Frontiers in Microbiology 10:2653. doi: 10.3389/fmicb.2019.02653

